Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 373(6550)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210852

RESUMO

Large-scale human exome sequencing can identify rare protein-coding variants with a large impact on complex traits such as body adiposity. We sequenced the exomes of 645,626 individuals from the United Kingdom, the United States, and Mexico and estimated associations of rare coding variants with body mass index (BMI). We identified 16 genes with an exome-wide significant association with BMI, including those encoding five brain-expressed G protein-coupled receptors (CALCR, MC4R, GIPR, GPR151, and GPR75). Protein-truncating variants in GPR75 were observed in ~4/10,000 sequenced individuals and were associated with 1.8 kilograms per square meter lower BMI and 54% lower odds of obesity in the heterozygous state. Knock out of Gpr75 in mice resulted in resistance to weight gain and improved glycemic control in a high-fat diet model. Inhibition of GPR75 may provide a therapeutic strategy for obesity.


Assuntos
Índice de Massa Corporal , Exoma/genética , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Animais , Variação Genética , Humanos , Camundongos , Camundongos Knockout , Análise de Sequência de DNA , Aumento de Peso/genética
2.
Cell Metab ; 30(5): 890-902.e8, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31523009

RESUMO

We hypothesized that bone evolved, in part, to enhance the ability of bony vertebrates to escape danger in the wild. In support of this notion, we show here that a bone-derived signal is necessary to develop an acute stress response (ASR). Indeed, exposure to various types of stressors in mice, rats (rodents), and humans leads to a rapid and selective surge of circulating bioactive osteocalcin because stressors favor the uptake by osteoblasts of glutamate, which prevents inactivation of osteocalcin prior to its secretion. Osteocalcin permits manifestations of the ASR to unfold by signaling in post-synaptic parasympathetic neurons to inhibit their activity, thereby leaving the sympathetic tone unopposed. Like wild-type animals, adrenalectomized rodents and adrenal-insufficient patients can develop an ASR, and genetic studies suggest that this is due to their high circulating osteocalcin levels. We propose that osteocalcin defines a bony-vertebrate-specific endocrine mediation of the ASR.


Assuntos
Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Osteocalcina/sangue , Estresse Fisiológico/genética , Insuficiência Adrenal/metabolismo , Adrenalectomia , Adulto , Animais , Células Cultivadas , Feminino , Ácido Glutâmico/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Osteocalcina/genética , Sistema Nervoso Parassimpático/citologia , Ratos , Ratos Sprague-Dawley
3.
Nat Rev Endocrinol ; 14(3): 174-182, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29376523

RESUMO

A remarkable, unexpected aspect of the bone-derived hormone osteocalcin is that it is necessary for both brain development and brain function in the mouse, as its absence results in a profound deficit in spatial learning and memory and an exacerbation of anxiety-like behaviour. The regulation of cognitive function by osteocalcin, together with the fact that its circulating levels decrease in midlife compared with adolescence in all species tested, raised the prospect that osteocalcin might be an anti-geronic hormone that could prevent age-related cognitive decline. As presented in this Review, recent data indicate that this is indeed the case and that osteocalcin is necessary for the anti-geronic activity recently ascribed to the plasma of young wild-type mice. The diversity and amplitude of the functions of osteocalcin in the brain, during development and postnatally, had long called for the identification of its receptor in the brain, which was also recently achieved. This Review presents our current understanding of the biology of osteocalcin in the brain, highlighting the bony vertebrate specificity of the regulation of cognitive function and pointing toward where therapeutic opportunities might exist.


Assuntos
Osso e Ossos/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/fisiopatologia , Organogênese/genética , Osteocalcina/metabolismo , Adolescente , Adulto , Fatores Etários , Envelhecimento/metabolismo , Animais , Encéfalo/embriologia , Cognição/fisiologia , Humanos , Camundongos , Organogênese/fisiologia , Sensibilidade e Especificidade , Aprendizagem Espacial
4.
Mol Metab ; 6(12): 1610-1615, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29157601

RESUMO

OBJECTIVE: That the bone-derived hormone osteocalcin is necessary to promote normal brain development and function, along with its recently described sufficiency in reversing cognitive manifestations of aging, raises novel questions. One of these is to assess whether bone health, which deteriorates rapidly with aging, is a significant determinant of cognition and anxiety-like behavior. METHODS: To begin addressing this question, we used mice haploinsufficient for Runx2, the master gene of osteoblast differentiation and the main regulator of Osteocalcin expression. Control and Runx2+/- mice were evaluated for the expression of osteocalcin's target genes in the brain and for behavioral parameters, using two assays each for cognition and anxiety-like behavior. RESULTS: We found that adult Runx2+/- mice had defects in bone resorption, reduced circulating levels of bioactive osteocalcin, and reduced expression of osteocalcin's target genes in the brain. Consequently, they had significant impairment in cognitive function and increased anxiety-like behavior. CONCLUSIONS: These results indicate that bone remodeling is a determinant of brain function.


Assuntos
Ansiedade/genética , Remodelação Óssea , Cognição , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Encéfalo/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteocalcina/sangue
5.
J Exp Med ; 214(10): 2859-2873, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28851741

RESUMO

That osteocalcin (OCN) is necessary for hippocampal-dependent memory and to prevent anxiety-like behaviors raises novel questions. One question is to determine whether OCN is also sufficient to improve these behaviors in wild-type mice, when circulating levels of OCN decline as they do with age. Here we show that the presence of OCN is necessary for the beneficial influence of plasma from young mice when injected into older mice on memory and that peripheral delivery of OCN is sufficient to improve memory and decrease anxiety-like behaviors in 16-mo-old mice. A second question is to identify a receptor transducing OCN signal in neurons. Genetic, electrophysiological, molecular, and behavioral assays identify Gpr158, an orphan G protein-coupled receptor expressed in neurons of the CA3 region of the hippocampus, as transducing OCN's regulation of hippocampal-dependent memory in part through inositol 1,4,5-trisphosphate and brain-derived neurotrophic factor. These results indicate that exogenous OCN can improve hippocampal-dependent memory in mice and identify molecular tools to harness this pathway for therapeutic purposes.


Assuntos
Cognição/fisiologia , Osteocalcina/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Envelhecimento/fisiologia , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/fisiologia , Cognição/efeitos dos fármacos , Eletrofisiologia , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteocalcina/farmacologia
6.
Cell ; 155(1): 228-41, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074871

RESUMO

The powerful regulation of bone mass exerted by the brain suggests the existence of bone-derived signals modulating this regulation or other functions of the brain. We show here that the osteoblast-derived hormone osteocalcin crosses the blood-brain barrier, binds to neurons of the brainstem, midbrain, and hippocampus, enhances the synthesis of monoamine neurotransmitters, inhibits GABA synthesis, prevents anxiety and depression, and favors learning and memory independently of its metabolic functions. In addition to these postnatal functions, maternal osteocalcin crosses the placenta during pregnancy and prevents neuronal apoptosis before embryos synthesize this hormone. As a result, the severity of the neuroanatomical defects and learning and memory deficits of Osteocalcin(-/-) mice is determined by the maternal genotype, and delivering osteocalcin to pregnant Osteocalcin(-/-) mothers rescues these abnormalities in their Osteocalcin(-/-) progeny. This study reveals that the skeleton via osteocalcin influences cognition and contributes to the maternal influence on fetal brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Osteocalcina/metabolismo , Transdução de Sinais , Envelhecimento , Animais , Encéfalo/embriologia , Encéfalo/fisiologia , Feminino , Feto/metabolismo , Camundongos , Neurotransmissores/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA